Identifying the audio language of online videos is crucial for industrial multi-media applications. Automatic speech recognition systems can potentially detect the language of the audio. However, such systems are not available for all languages. Moreover, background noise, music and multi-party conversations make audio language identification hard. Instead, we utilize text based user comments as a new signal to identify audio language of YouTube videos. First, we detect the language of the text based comments. Augmenting this information with video meta-data features, we predict the language of the videos with an accuracy of 97% on a set of publicly available videos. The subject matter discussed in this research is patent pending.