In this paper, we present the interim results of a transformer-based annotation pipeline for Ancient and Medieval Greek. As the texts in the Database of Byzantine Book Epigrams have not been normalised, they pose more challenges for manual and automatic annotation than Ancient Greek, normalised texts do. As a result, the existing annotation tools perform poorly. We compiled three data sets for the development of an automatic annotation tool and carried out an inter-annotator agreement study, with a promising agreement score. The experimental results show that our part-of-speech tagger yields accuracy scores that are almost 50 percentage points higher than the widely used rule-based system Morpheus. In addition, error analysis revealed problems related to phenomena also occurring in current social media language.