Orphée De Clercq

Senior Researcher
E-mail address
Telephone number
+32 9 33 11 938
Curriculum vitae
Orphée De Clercq

About Orphée

Orphee is particularly interested in modeling deep semantic knowledge in order to have NLP applications better grasp this multifaceted aspect of natural language. In 2015 she defended her PhD for which she devised the first state-of-the-art classification-based readability prediction system for Dutch and the first end-to-end system for fine-grained sentiment analysis. For both systems she investigated the added value of incorporating deep semantic knowledge in the form of coreference, semantic roles and linked open data. 

During her postdoc, Orphee is further elaborating on her readability research. Her main objectives are to (1) investigate domain portability and (2) move towards automated writing evaluation. At the same time she is exploring new techniques for porting her Dutch fine-grained sentiment analysis pipeline to different domains and languages and greatly enjoys processing user-generated content. She is teaching new courses on translation technology and digital communication using blended learning techniques.


Short bio

After obtaining her Master's at the Faculty of Applied Language Studies, Orphée became a member of the LT3 research team where she was introduced to the fascinating field of computational linguistics. During her first work on various research projects at the LT3 team she was responsible for the compilation of some prestigious Dutch corpus projects and the (semi)-automatic annotation of various semantic layers. She has devised new tools for coreference resolution and semantic role labeling. The latter while she was partially employed at the University of Utrecht.

In more recent years, she has developed a full-fledged readability prediction system for Dutch and English generic text with a focus on the added value of incorporating more semantic knowledge. In the spring of 2014, Orphée spent a semester at the University of Mannheim where she performed research on adding deep semantics to content-based book recommenders and combining sentiment analysis techniques with information derived from linked open data. During her work on the PARIS project she was responsible for the deep linguistic processing of user-generated content. In the summer of 2015 Orphée obtained her PhD, in her dissertation she investigated the impact of incorporating semantic features on the performance of high-end applications such as automatic readability prediction and sentiment analysis.

She is currently employed at LT3 as a postdoctoral research assistant and continues her work on readability prediction and sentiment analysis.